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COLLAPSE OF A SIMPLY SUPPORTED CIRCULAR PLATE
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Abstract-Bending of a simply supported circular plate under two uniform normal loads of different magnitudes
in the central region and outer annulus is considered. A rigid, perfectly plastic material is assumed which obeys
the Tresca yield condition. Exact solutions are determined in terms of the radial and circumferential bending
moments. A complete two-parameter collapse-load diagram is constructed which is piecewise regular. A variety
of collapse mechanisms is exhibited for various ratios of the loads. In particular, a "two-way" deflection mode is
found-the plate can deflect either "up" or "down" at a certain ratio of opposing loads. A new result of special
significance is shown-portions of some stress trajectories lie within the rigid-domain bounded by the yield
surface.

NOTATION

The notation used corresponds largely to that of Hodge [I], An exception occurs where shell notation for
the transverse shear has been preferred ([3], p. 313). Actual quantities are first defined and then dimensionless
quantities are introduced. Rotational symmetry applies:

H half thickness, length
R radial coordinate, length
(I angular coordinate
R o outside radius, length
K R curvature in radial direction, l/length
K e curvature in circumferential direction, ljlength
W deflection normal to plate, length
M R radial bending moment, length-force/length
Me circumferential bending moment, length-force/length
M 0 yield bending moment
Q transverse shear stress resultant, force/length
P transverse surface pressure, force/area
Q(m" me) generalized stress vector
q(K" Ke) generalized strain vector
P,(Pt, P2) collapse load vector

Dimensionless quantities:

(I)

H
w=-W

2R~

R
r=-,

Ro

H
h=­

2Ro'

H M R2 H
K = TKo m = M

o
' P = 6;;0 P, q = 2M

o
Q.

Deformation states are discussed here in terms of conventional curvature K and deflection w. Actually, K

and ware incremental changes which occur at collapse. Those who prefer can substitute curvature rates K and
velocity w.
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INTRODUCTION

COLLAPSE of circular plates under combined loading has been considered by Hodge
([1], p. 42) and Drucker and Hopkins [2]. The former dealt with two uniform loadings as
considered herein but only with positive loads, i.e. both acting in the same direction. The
latter dealt with a concentrated load and a uniform load on an overhanging plate with the
simple support as a special case. The latter analysis also pertained only to positive loads.
It is the purpose of the present analysis to study the complex collapse behavior that can
exist when the loads oppose one another.

DESCRIPTION OF THE PROBLEM

Exact solutions for the collapse loads and the incipient deflections are desired for the
rotationally symmetric problem of a simply-supported circular plate loaded transversely
by one uniform pressure, PI' in a central region and by a second uniform pressure, Pz , in
a concentric annular region. The positive senses of the loads and the dimensions of the
plate are shown in Fig. 1.

FIG. 1. Loading and dimensions of the circular plate.

(2a--e)
rq Jr(rmJ -me = h = -6 0 sp(s)ds

The equilibrium equations and kinematic relations for rotationally symmetric bending
of a circular plate take the following form in the dimensionless variables ([1], p. 40) :

(r:r+6rp = 0

-W'

"e = --,
r

"r = -w" (3a,b)

( )' =~.
dr

For the problem of Fig. 1, the right-hand side of equilibrium equation (2c) is integrated
for the two regions, 0 ;:;; r ;:;; p and p ;:;; r ;:;; 1, where PI and pz are dimensionless forms of
PI and Pz , respectively. After integration and combination with equation (2b), two equilib­
rium equations result for the two regions:

(rm r ), -me = 3p l rz, 0;:;; r ;:;; p (4)

(rmJ - me = 3(PI +pz)pZ - 3pzrz, p ;:;; r ;:;; 1. (5)
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The external energy dissipation rate is

679

(6)

D = f:o PW . 2nR dR.

This is put into a dimensionless form d as follows

H t
d = 2 • D = 6f pwr dr.

4nMoRo 0

For the present problem d becomes

d = -6Ptf: wrdr+6P2 ( wrdr.

The plate material is assumed to be rigid-perfectly plastic and to obey the Tresca yield
condition. This yield condition in the two-dimensional space of the generalized stresses
m, and me is shown in Fig. 2. Stress points Q(m" me) inside the yield surface are less than
yield and correspond to rigid body motions, those on the surface correspond to yield and
possible nonzero strain, and those outside the surface are forbidden for a perfectly plastic
material. Thus, a stress point Q(m" me) must obey the inequalities

(7a-f)

FIG. 2. Tresca yield condition.

The consecutive laws for a perfectly-plastic material have been developed by Drucker
[4,5] based on the "plastic potential flow law" of von Mises [6] ([ 1], pp. 9-10). For a stress
point Q(m" me) on a yield curve (e.g. me = 1), the resultant strain-rate vector q(K" Ke)
originates at this point and is parallel to the outward-normal to the curve at that point.
Thus, the following equations for curvature and deflection [from equations (3a,b)] apply
for the six sides of the yield condition of Fig. 2:

onAB: KeIK, = 0, K, ~ 0; W = At (8a)

onBC: K,IKe = 0, Ke ~ 0; w = A 2r+B2 (8b)

onCD: KeIK, = -1, Ke ~ 0, K, ~ 0; W = A 3 log r+B3 (8c)

on DE: KeIK, = 0, K, ~ 0; W = A 4 (8d)
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onEF:

onFA: KO ~ 0;

(8e)

(8f)

Inside the hexagon ABCDEF the curvatures and deflections are:

(8g)

The Ai and Bi are arbitrary constants.
The boundary conditions for the circular plate of Fig. 1 are

mr = 0, w = 0 at r = 1. (9a,b)

Non-uniqueness of the rand (} directions at the center of the plate leads to the following
condition:

mr = mo, at r = O.

Also the deflection at the center is defined as

W == Wo, at r = O.

(10)

(11)

Other conditions are that w, mr , and q must be continuous.
It is desired to find a complete collapse-load curve; i.e. a plot of PI vs. P2 at collapse.

Since the yield surface is convex it follows that the collapse-load curve must also be convex
([ 1], pp. 19-20). Therefore, convexity of the collapse-load curve can be used as a check on
solutions. Since the Tresca yield surface is piecewise regular, and since different collapse
behavior is likely for different load ratios Pt/P2' it is expected that the collapse-load surface
is also piecewise regular.

METHOD OF ANALYSIS

The Upper and Lower Bounds of Limit Analysis are employed. If a load P(PI' P2) can
be shown to be both an upper bound to the collapse load Pc; i.e., Ipi ~ IPcl and a lower bound,
Ipi ~ IPcl then it is necessary that P is an exact solution; i.e., P = Pc' This is the method
used here.

An upper bound is defined in terms of a kinematically admissible deflection solution:
W is a solution that satisfies one or more of equations (8) and boundary condition (9b),
Wis continuous, all stress points Q(mr , mo) correspond to strain vectors q(Kn Ko) associated
with W through equations (8a-g), and positive work is done; i.e., d > O. A lower bound
is defined in terms of a statically admissible stress solution: mr and mo are solutions of
equilibrium equations (4) and (5), that also satisfy condition (10) and inequalities (7a-f),
mr satisfies boundary condition (9a), and mr and q are continuous.

Solutions

The analysis is begun for the values of PI and P2 considered by Hodge ([1], pp. 42-43);
i.e., PI < 0, P2 > 0, and the deflection everywhere positive and conical. This solution is
called "Collapse Mode I".
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Collapse Mode I. The stress trajectory ofQ and the deflection mode are shown in Fig. 3(a).
The solution is:

mo = I

mr = I+Pl r2

mr = (1- P2 r2 )+ (P2 +PI)(3 - 2p/r)p2,

m~ = 2Plr

m~ = -2P2r+2(P2+PI)p3/r2

W = wo(1-r)

O~r~1

O~r~p

p~r~1

O~r~p

p~r~1

O~r~ 1.

(12a--e)

(13a,b)

(14)

The moment solution (12a--e) satisfies the condition mr(O) = mo(O) and is continuous at
r = p.

The boundary condition (9a) substituted into equation (12c) gives a linear relationship
between PI and P2 for a fixed value of p:

(15)

Equation (15) represents the exact collapse load if mr satisfies condition (7a). For r < p,
equation (12b) requires that

PI ~ 0, (16a)

and for r > p it is necessary that m~ < 0, which leads to

(16b)

(17a,b)
p

3(1- p)
P2 =PI =

PI = 0,

and

since for P2 > 0 the maximum of m~ occurs at r = 1. Equality in either (16a) or (l6b)
enables determination oflimit values on PI and P2 from solution (15). These are, respectively,

I

At the limit (17b), P2 is no longer positive, but it may be verified that even for this load
the inequality (16b) still assures mr ~ I everywhere. It is evident for the first load point
(17a) that positive work is done. For the second point (l7b), substitution of PI and P2 and
w from (14) into (6) gives d = W o' Thus, d is positive for positive Wo and, therefore, the
collapse load curve (15) is exact between the limits (17a, b).

Atthe limit point (17a)for which PI = 0, the state ofstress for the entire region 0 ~ r ~ p
corresponds to the one point B of the yield condition, Fig. 3(a) and Fig. 2. The deflection
solution for this region is, therefore, not unique, because all strain vectors q of a 900 -fan
are permitted; i.e., any deflection with positive K r and Ko is allowed. This lack of uniqueness
at PI = 0 is indicated by the dashed lines in Fig. 3(a).
Collapse Mode II. For this solution the stress trajectory lies partly on side AB and partly
on side Be of the yield limit as shown in Fig. 3(b). The deformation state consists of a
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FIG. 3. Stress trajectories and incipient deflections for the collapse modes.

rigid-body translation in the central region. The results are:

mr = 1,

(18a--<:)

(19a--<:)

mr = 1,

mo = 1,
(20a,b)

(21a, b)

These moment-equations include the conditions mr(O) = mo(O), mr(l) = 0, and the condi­
tion of continuity of mr at r = p. The conditions mo(¢) = 1 and mr(¢) = 1 substituted into
equations (19b) and (20b) give, respectively:

(e- p2)p2- p2p1 = 0

[(1-¢3)-3p2(1-¢)]p2-3p(1-¢)Pl = 1.

Equations (21a, b) constitute a nonlinear relation between PI and P2 in terms of the radius
parameter ¢.
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For 0 ~ r ~ p, the restrictions me(P) ~ 0 and m~ ~ 0, imposed on solutions (18b, c),
imply two inequalities for Pl :

1
P <-

1 = 3p2 '

The restriction m~ ~ 0 in solution (19c) gives:

P2 ~ o.

Pl ~ O. (22a, b)

(22c)

Equality in either (22a) or (22b) gives the following limits for Mode II from equations
(21a, b):

and where

1
Pl = 3p2'

Pl = 0,

where e2 > p,

P2 = (l-pf(I+2p)'

(23a)

(23b)

(24a, b)

It can be shown that positive work is done for Mode II.
Collapse Mode III. Examination of Mode II in Fig. 3(b) suggests that the rigid body transla­
tion in the central region and the condition (10) can also be satisfied by another Mode III
shown in Fig. 3(c). At a point 11 on side AB, the stress trajectory for r ~ 11 is permitted to
lie in the rigId domain bounded by the yield surface ([7], pp. 27-28). For 0 ~ r ~ 11 the
stress distribution is not unique. Any arbitrary solution to the equilibrium equations (4)
and (5) which also satisfies inequalities (7a-f) and equation (10) is acceptable. The arbitrari­
ness is due to the lack of a constitutive law in the rigid region 0 ~ r ~ 11. This shows the
difference between a rigid~plastic material and an elastic-plastic material.

For this rigid-plastic solution the plastic part yet determines a collapse-load curve. For
11 ~ r ~ e, equations (19a-c) and inequality (22c) for side AB are valid. The conditions
me(e) = 1 and me(11) = ml give

(e 2- p2)P2 - p2P1 = 0

1+3P2(112- p2)-3P1P2 = ml'

where 0 ~ ml ~ 1. For e~ r ~ 1, equations (20a, b) and (21b) hold for side BC Equations
(24a) and (21b) enable a collapse-load curve to be plotted for Mode III for various values
of the radius e. Since equation (24a) is identical to (21a), the collapse-load curve for Mode III
is found to be a smooth continuation of the curve for Mode II.

It is easily shown that positive work is done for the Pl and P2 values for Mode III, and
for kinematically admissible deflection values satisfying the solution equations (8a, b, g)
and (11). In order to prove that equations (24a) and (21b) constitute an exact solution for
Pl and P2' there yet remains to show that a statically admissible stress state exists for the
rigid region 0 ~ r ~ 11. As an example, the stress trajectory in Fig. 3(c) is a statically
admissible solution. For this trajectory the moment solution is

for 0 ~ r ~ p (25a, b)
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for P ~ r ~ 1'/,

(25c, d)

where 0 < mz < 1 and 0 < m3 < 1. This solution has m~ > 0, mr(O) = me(O), and mr(l'/) = 1,
as required. Continuity of mr at r = p gives one equation between the parameters m1 and
mz. Thus, arbitrariness exists in the solution as indicated earlier.

Equation (24b) is one equation between m1 and 1'/ which for 0 ~ m1 ~ 1 and pz > 0
implies p ~ 1'/ ~ ~. The non-uniqueness in 1'/ means that the width of the plastic zone
1'/ ~ r ~ ~ is not unique. Thus, in Mode III non-uniqueness is exhibited in two ways: the
stresses in the rigid region 0 ~ r ~ 1'/ are not unique, and the width of the plastic region
1'/ ~ r ~ ~ is not unique.
Collapse Mode IV. The stress trajectory of Collapse Mode III for 0 ~ r ~ 1'/ in Fig. 3(c),
suggests that the stress trajectory of a new mode, IV, may lie on sides EF and FA for
o~ r ~ 1'/. This is the case as shown in Fig. 3(d). However, when this analysis is carried out
it is found that this collapse mode is valid at only one point in the Pl, pz plane. This point
is also a point for Mode III for which m1 = 0 in equation (24b).

The detailed solution for Mode IV is not presented, since it exists for only one point
and because the point (Pl' pz) can also be found from solutions for Mode III and another
Mode VII which is considered later.

For the deflection shown in Fig. 3(d), open circles indicate strong discontinuities,
"yield hinges" (discontinuity in w'), and solid circles indicate weak discontinuities (con­
tinuity in w').
Collapse Mode V. In the analysis conducted so far, adjoining collapse modes have been
found by first finding a side or sides of the Tresca hexagon common to both modes. How­
ever, this method becomes increasingly difficult to employ as the collapse modes have
become more complex. Instead of seeking another mode adjoining the complex mode IV,
it is more efficient to seek a connection to the simple mode, I. Mode I, Fig. 3(a) was originally
found for Pl ~ O. Mode I, reflected about the origin is also valid for Pl ~ 0 and has then
side EF of the yield surface (Fig. 2) valid throughout the plate. Collapse Mode V is now
considered for which yielding is defined partly by side FAin addition to side EF as shown
in Fig. 3(e). The solution is as follows:

me = -I, (26a--e)

me = -I, mr = [3(Pl+PZ)pZ-1](l-(/r)-pz(rZ-C/r),

m~ = [3(Pl +Pz)pz-1K/rz-pz(2r+(3/rz), P ~ r ~ (

3
me = mr-l, mr = [3(Pl +pz)pZ -1Jlog r-2: pz(rZ-1),

(27a--e)

(28a--e)

This solution satisfies the conditions mr(O) = me(O), mr(O = 0, and mr(l) = O. On side EF.
the conditions mr(p) ~ 0 and m~(p) ~ 0 require from equations (26a, c), that

1
Pl ~2

P
and Pl ~ O. (29a, b)
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The conditions m~(() ~ 0, m~(1/) = 0, m~(1) ~ 0, mr(() = 0, and mr(1/) ~ 1, substituted into
equations (27c), (28c), (28c), (28b), and (28b), respectively, give:

3(p 1 +pz)pZ - 1-3pz(Z ~ 0,

3(Pi + pz)pZ - 1- 3Pz1/z = 0,

3(Pi + pz)pZ -1- 3pz ~ 0, (30a--e)

3
[3(Pi + pz)pZ -1]log (-:zpzW -1) = 0,

3
[3(Pi+Pz)pZ-1]log1/-:zpz(1/z-1) ~ l.

Also, continuity of mr at r = p requires that equations (26b) and (27b) are equal:

-1 +P1Pz = [3(Pi +pz)pZ -1][1- (jp] - pz(pZ - Cjp). (30f)

(31a, b)

The three equations (30b, d, f) in four unknowns Pi' Pz, (, and 1/ define a collapse-load curve.
The solution is exact if it can be shown that it is kinematically admissible and dissipates
positive energy. The deflection solutions (8e) and (8f) which satisfy the conditions w(l) = 0,
w(O) = -wo , and w(e) and w'(e) continuous, are

(r-(+OogO
w = ((i-logO Wo,

[Continuity of w'(O is required because a strong discontinuity in the strain-rate vector q
cannot be permitted at Point F ([ 1], p. 12).]

For 1/ = ( = 1, equation (30b) implies equality in (30a) and (3Oc) and Mode V intersects
Mode I. For ( = p, equation (3Of) requires Pi = IjpZ, and (29a) becomes an equality.
Equation (3Od) then determines Pz. Thus, at the other limit point to Mode V, Pi and pz are

1
Pi = 2'

P

-210gp
(32a, b)

It can be verified that positive energy is dissipated by substitution of (32a, b) and (31a, b)
into (6).
Collapse Mode VI. A new collapse mode, VI, intersecting V at the point (32a, b) is easily
found, which is based on the same sides of the yield condition. The difference is that r = p
now falls on side FA rather than on EF as indicated in Fig. 3(e). It follows, therefore, that
the deflection solution (31a, b) is again valid, and that the stress solution is:

°~ r ~ ( (33a--e)

(34a--e)
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p~r~1.

(35a-e)

This solution satisfies the conditions m,(O) = m8(0), m,(n = 0, and m,(I) = 0 if

1
PI = e' (36)

Forp ~ r ~ l,theconditionsm,(1/) ~ landm~(1/) = 0,substitutedinto(35b,c),respectively,
give

3
[3(PI+P2)p2-1]logl/-"2P2(I/2-1) ~ 1,

3(p I +P2)P2 - 1- 3P21/2 = O.

Continuity of m, at r = p in equations (34b) and (35b) requires:

(37a, b)

Equations (36), (37b), and (38) in the four unknowns, PI' P2' (, and 1/ determine a collapse­
1

load curve. As already indicated, ( = p, PI = 2" is the point of intersection with Mode V
p

[P2 given by (32b)]. The other limit point to Mode VI occurs when (37a) becomes an
equality. It can be found that positive energy is dissipated by substitution of PI and P2
values and the deflection solutions (31a, b) into equation (6).
Collapse Mode VII. At the limit point r = 1/ of Mode VI corresponding to the vertex A,
the stress trajectory can also enter within the yield surface ([7], pp. 27-28). Thus, the stress
trajectory shown in Fig. 3(f) is considered for Mode VII. A rigid-body deflection, w = 0,
is the solution for 1/ ~ r ~ 1.

For 0 ~ r ~ 1/, the yield conditions for sides EF and FA define yielding as before in
Mode VI. For 1/ ~ r ~ 1 the plate is rigid and Q traces a trajectory inside FA. As in Mode
III, that part of the stress-trajectory within the yield surface is not unique.

Because of the similarity with Mode VI, equations (33a-e), (34a-e), (36), and (37b) also
hold for this mode, VII. Equations (35a, c) also hold, but for p ~ r ~ 1/. Equation (35b)
must be replaced by

(39)

in order to satisfy the condition m.(1/) = 1. Continuity of m, at r = p now gives:

For 1/ ~ r ~ 1, any statically admissible stress solution may be permitted which
satisfies the continuity conditions and boundary conditions. The trajectory shown in
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Fig. 3(f) is an example. It corresponds to the following moment solution:

687

and

me = 0,

mr = 3(Pl +P2)p2 (1-~ )- P2(r2_ 1]:) +~,

me = mr-m,

for 1] ~ r ~ ~,

for ~ ~ r ~ 1,

where 0 < m ~ 1. This solution satisfies the continuity condition at r = 1] and the boundary
condition mr = 0 at r = 1. Also m~ < 0 for 1] ~ r ~ ~ as can be verified with use of equa­
tion (37b). Continuity of mr at r = ~ gives one equation between the unknowns m and ~.

Thus the solution is arbitrary to this degree. It is found that m or ~ can be chosen to provide
m~ < 0 for ~ ~ r ~ 1.

Although there remains some arbitrariness in the stress solution for 1] ~ r ~ 1, a
collapse-load curve for Mode VII can be plotted using only equations (36), (37b), and (40).
This is an exact collapse-load curve since it is also kinematically admissible; d > 0 as can
be checked. The complete collapse-load diagram shown in Fig. 4 is now finished.

o-4

-I

FlG. 4. Collapse-load diagram for a circular plate, p = 0·4.
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Mode Ill"

Mode :lZII

The point of intersection of Modes VII and III, where also Mode IV is valid, is an
interesting point. At this point the deflection solution is not unique. There is a changeover
from positive deflection to negative deflection and a transition in appearance of the
deflected shape. The deflection profiles for these three modes are shown together in Fig. 5.

rigid plostic

Mode m

r-0
.
68

I r ,.... 1

Y+r
r-..,--+"t'1
~

trlgld

FIG. 5. Point of transition from Mode III to Mode IV to Mode VII, PI = 7'98, P2 = 4,20, p = OA.

The radii, r = 0·68 and r = 0·62 to the yield-hinge circles (strong discontinuities) are the
same for Modes III and IV, and for Modes IV and VII, respectively.

CONCLUSIONS

A plate or shell of rigid-perfectly plastic material usually collapses at a definite load
and in a specific shape for a loading defined by a single parameter. Under multiple load­
ing, however, there is an interplay of load parameters which characterizes several different
collapse mechanisms. A simply supported circular plate loaded by two uniform pressures,
a two-load parameter problem, is an example. In this case, seven independent collapse
modes are possible each for a different range of the load parameters. In five of the modes,
the whole plate yields according to one or more sides of the Tresca yield condition. In the
other two modes, only part of the plate is wholly plastic, and other parts are rigid with stress
trajectories within the yield surface. The partially rigid, partially plastic collapse occurs
for opposing loads. Also, when the loads oppose one another, the deflection solution may
not be unique, but yet has to be a linear combination of a finite number of possibilities.
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Resume-La flexion d'une plaque circulaire, simplement supportee sous deux charges normales uniformes de
magnitudes differentes dans la region centrale et la couronne circulaire exterieure est consideree. Un materiel de
plastique parfaitement rigide est assume qui obeit ala condition de rendement de Tresca. Les solutions exactes
sont determinees en termes des moments, de flexion radiaux et circonferentiels. Un diagramme complet de charge
de rupture a deux parametres est construit, qui est regulier du cote de la piece.

Une variete de mecanismes de rupture est exposee pour differents degres de chargement. Particulierement un
mode de deflection a "deux fa~ons" est decouvert, la plaque peut devier soit "en haut" soit "en bas" it certains
degres de charges opposantes. Un nouveau resultat de portee speciale est demontre-<tes portions de quelques
trajectoires de contrainte se trouvent dans Ie domaine rigide limite par la surface de rendement.

Zusammenfassung-Die Biegung einer einfach gestiitzten runden Platte unter zwei gleichf6rmigen Normallasten
verschiedener Grosse, im Mittelbereich sowie im ausseren Ring, wird behandelt. Ein starres, vollkommen plastis­
ches Material wird vorausgesetzt, das die Tresca'sche Fliessbedinung befolgt. Genaue Losungen werden bestimmt
und als Radial- und Ringbiegemomente ausgedriickt. Ein vollstandiges Schaubild wird aufgebaut fUr die zwei­
parameter Zusammenbruchsbelastung, das Schaubild ist stiickweise regelmassig. Verschiedene Zusammen­
bruohsmechanismen werden fUr die verschiedenen Belastungsverhaltnisse gezeigt. Insbesondere wird eine
"zweiweg" Durchbiegung gezeigt, wobei die Platten bei bestimmten Verhaltnissen der gegenwirkenden Belas­
tungen "auf' oder "ab" ausweichen konnen. Ein neues Resultat wird gezeigt, das von besonderer Wichtigkeit
ist-Teile mancher Spannungstrajektorien liegen innerhalb der starren Domane die von der Fliess-Oberflache
umgeben sind.

A6CTpaKT-PaccMaTpHBaeTclI CrH6aHHe cB06oAHO orrepToit KpyroBoit rrnaCTHHhI rrOA AByMlI OAHOpOAHhIMH
HopManhHhIMH Harpy3KaMH pa3nH'iHhIX pa3MepOB B ueHTpanhHoit 'iaCTH H BO BHeWHeM KpyroBoM Konhue.
TIpeArronaraeTclI COBepweHHO TBepAhlit rrnaCTH'ieCKHit MaTepHan, KOTOPhli!: YAOBneTBoplIeT ycnOBHlO
TeKy'ieCTH TpecKa (Tresca yield). OrrpeAeneHhI TO'iHhle peweHHlI c TO'iKH 3peHHlI paAHanhHhIX H3rH6alOll.\HX
MOMeHTOB OKpylKHOCTH Kpyra. CocTaBneHa rronHalI AHarpaMMa ABy-rrapaMeTpH'ieCKoi!: KpHTH'ieCKoi!:
Harpy3KH, KOTopalI KyCO'iHO rrpaBHnhHa. TIpeAcTaBneHo MHoro06pa3He pa3pywalOll.\Hx (KpHTH'ieCKHx)
MexaHH3MOB AnJI pa3nH'iHbIX COOTHoweHHi!: Harpy30K. B OC06eHHOCTH HaitAeH "ABYCTOPOHHHil." 06pa3
Aei!:cTBHlI OTKnOHeHHlI; rrnaCTHHa MOlKeT OTKnOHJITbClI "BBepx" HnH "BHH1" rrpH orrpeAeneHHblx COOTHO­
weHHlIX rrpOTHBorrOCTaBneHHhIX Harpy30K.

OOKalaH HOBbli!: pe3ynhTaT crreUHanhHoro 3Ha'ieHHlI. "IacTH HeKOTophIX Tpa'lKTOpHH HarrplIlKeHHlI
nelKaT B rrpeAenax TBepAoi!: 06nacTH, OrpaHH'ieHHoi!: rrOAAalOll.\ei!:clI rrOBepXHOCThIO.


