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Abstract—Bending of a simply supported circular plate under two uniform normal loads of different magnitudes
in the central region and outer annulus is considered. A rigid, perfectly plastic material is assumed which obeys
the Tresca yield condition. Exact solutions are determined in terms of the radial and circumferential bending
moments. A complete two-parameter collapse-load diagram is constructed which is piecewise regular. A variety
of collapse mechanisms is exhibited for various ratios of the loads. In particular, a “‘two-way"’ deflection mode is
found—the plate can deflect either “up” or “‘down’ at a certain ratio of opposing loads. A new result of special
significance is shown—portions of some stress trajectories lie within the rigid-domain bounded by the yield
surface.

NOTATION

The notation used corresponds largely to that of Hodge [1]. An exception occurs where shell notation for
the transverse shear has been preferred ([3], p. 313). Actual quantities are first defined and then dimensionless
quantities are introduced. Rotational symmetry applies:

H half thickness, length

R radial coordinate, length

4 angular coordinate

R, outside radius, length

Ky curvature in radial direction, 1/length

K, curvature in circumferential direction, 1/length
w deflection normal to plate, length

Mg radial bending moment, length-force/length
M, circumferential bending moment, length-force/length
M, yield bending moment

Q transverse shear stress resultant, force/length
P transverse surface pressure, force/area

Q(m,, mg) generalized stress vector

q(x,, Ky) generalized strain vector

| XN collapse load vector

Dimensionless quantities:

H R H
h=—, r=—, = —
2R, R, 2R:
1
H M RS i, M
K =—K, m=—, =—P, = .
2 M, P TeM, 17 omM,

Deformation states are discussed here in terms of conventional curvature x and deflection w. Actually, x
and w are incremental changes which occur at collapse. Those who prefer can substitute curvature rates x and
velocity w.
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678 W. FLUGGE and J. C. GERDEEN

INTRODUCTION

CoLLAPSE of circular plates under combined loading has been considered by Hodge
(1], p- 42) and Drucker and Hopkins [2]. The former dealt with two uniform loadings as
considered herein but only with positive loads, i.e. both acting in the same direction. The
latter dealt with a concentrated load and a uniform load on an overhanging plate with the
simple support as a special case. The latter analysis also pertained only to positive loads.
It is the purpose of the present analysis to study the complex collapse behavior that can
exist when the loads oppose one another.

DESCRIPTION OF THE PROBLEM

Exact solutions for the collapse loads and the incipient defiections are desired for the
rotationally symmetric problem of a simply-supported circular plate loaded transversely
by one uniform pressure, P;, in a central region and by a second uniform pressure, P,, in
a concentric annular region. The positive senses of the loads and the dimensions of the
plate are shown in Fig. 1.

FiG. 1. Loading and dimensions of the circular plate.

The equilibrium equations and kinematic relations for rotationally symmetric bending
of a circular plate take the following form in the dimensionless variables ([1], p. 40):

) +erp =0
(2a—c)
’ — E - _ r
(rm,) —my = p 6[0 sp(s)ds
Kg = %, K, = —w' (3a,b)
d
(y=d0)

dr °

For the problem of Fig. 1, the right-hand side of equilibrium equation (2c) is integrated
for the two regions, 0 £ r < pand p £ r £ 1, where p, and p, are dimensionless forms of
P, and P,, respectively. After integration and combination with equation (2b), two equilib-
rium equations result for the two regions:

(rm,) —my = 3p,r?,

HA

r

IIA

o 4)
1

0
(rm,) —my = 3(py + p2)p* —3p,r?, pETr 8]

A
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The external energy dissipation rate is
Ro
D= "PW.2nRdR
0

This is put into a dimensionless form d as follows

H 1
d=——=5.D=6 dr.
4nM R} J prrar
For the present problem d becomes
P 1
d= —6p1j wrdr+6p2J. wr dr. (6)
0 P

The plate material is assumed to be rigid-perfectly plastic and to obey the Tresca yield
condition. This yield condition in the two-dimensional space of the generalized stresses
m, and m, is shown in Fig. 2. Stress points Q(m,, m,) inside the yield surface are less than
yield and correspond to rigid body motions, those on the surface correspond to yield and
possible nonzero strain, and those outside the surface are forbidden for a perfectly plastic
material. Thus, a stress point Q(m,, m,) must obey the inequalities

m =1, -m, <1, my < 1, —my £ 1,
' ' (7a—f)
m,—my < 1, —m,+my = 1.
ﬂle' xg
1)c B8
q
Yl
.D| () A ml’. xr
- %

F1G. 2. Tresca yield condition.

The consecutive laws for a perfectly-plastic material have been developed by Drucker
[4,5] based on the “plastic potential flow law” of von Mises [6] ([1], pp. 9-10). For a stress
point Q(m,, my) on a yield curve (e.g. my = 1), the resultant strain-rate vector q(x,, k,)
originates at this point and is parallel to the outward-normal to the curve at that point.
Thus, the following equations for curvature and deflection [from equations (3a,b)] apply
for the six sides of the yield condition of Fig. 2:

on AB: Ke/Kk, = 0, K, 2 0; w= A, (8a)
on BC: K,/Kkg = 0, Kg = 0; w= A,r+B, (8b)
on CD: Ke/K, = —1, Ke = 0, £0; w= A;logr+B, (8¢c)

Kf
on DE: Ko/x, = 0, K, < 0; w=A, (8d)
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on EF: K,/Kg = 0, Kg < 0; w = Asr+B; (8e)
on FA: K,/Kg = —1, K, = 0, Kg £ 0; w = Aglogr+ Bg. (8f)
Inside the hexagon ABCDEF the curvatures and deflections are:

K, = kg = 0, w=A,. (8g)

The A4; and B; are arbitrary constants.
The boundary conditions for the circular plate of Fig. 1 are

m, = 0, w=0 at r=1 (9a,b)

Non-uniqueness of the r and 6 directions at the center of the plate leads to the following
condition :

m,=my, at r=0. (10)
Also the deflection at the center is defined as
w=w,, at r=0. (11)

Other conditions are that w, m,, and g must be continuous.

It is desired to find a complete collapse-load curve; i.e. a plot of p, vs. p, at collapse.
Since the yield surface is convex it follows that the collapse-load curve must also be convex
([1], pp- 19-20). Therefore, convexity of the collapse-load curve can be used as a check on
solutions. Since the Tresca yield surface is piecewise regular, and since different collapse
behavior is likely for different load ratios p,/p,, it is expected that the collapse-load surface
is also piecewise regular.

METHOD OF ANALYSIS

The Upper and Lower Bounds of Limit Analysis are employed. If a load p(p,, p,) can
be shown to be both an upper bound to the collapse load p,.;i.e.,|p| = [p./ and a lower bound,
[pl < |p.| then it is necessary that p is an exact solution; ie., p = p,. This is the method
used here.

An upper bound is defined in terms of a kinematically admissible deflection solution:
w is a solution that satisfies one or more of equations (8) and boundary condition (9b),
w is continuous, all stress points Q(m,, m,) correspond to strain vectors q(x,, k4) associated
with w through equations (8a—g), and positive work is done; i.e., d > 0. A lower bound
is defined in terms of a statically admissible stress solution: m, and m, are solutions of
equilibrium equations (4) and (5), that also satisfy condition (10} and inequalities (7a—f),
m, satisfies boundary condition (9a), and m, and q are continuous.

Solutions

The analysis is begun for the values of p, and p, considered by Hodge ([1], pp. 42-43);
ie., p; <0, p, > 0, and the deflection everywhere positive and conical. This solution is
called ““Collapse Mode I".
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Collapse Mode I. The stress trajectory of Q and the deflection mode are shown in Fig. 3(a).
The solution is:

my =1 . 0rgi
m, = 14p,r? , 0Zr<yp (12a—)
m, = (1=pr)+(p2+p)3-2p/p>. p=r=i
m, = 2pr , 0=sr=sp (13a.0)
m, = —2p;r+2Ap,+py)p’/r* . p=sr=li
w = wy(l—r) R 0srl. (14)

The moment solution (12a-c) satisfies the condition m,(0) = m(0) and is continuous at
r=p.

The boundary condition (9a) substituted into equation (12c) gives a linear relationship
between p, and p, for a fixed value of p:

—(3—=2p)p*p; +(1-pl*(1+2p)p, = 1. (15)

Equation (15) represents the exact collapse load if m, satisfies condition (7a). For r < p,
equation (12b) requires that

P =0 (16a)
and for r > p it is necessary that m, < 0, which leads to
—pa(l=p})+p1p® <0, (16b)

since for p, > 0 the maximum of m, occurs at r = 1. Equality in either (16a) or (16b)
enables determination of limit values on p, and p, from solution (15). These are, respectively,

=0 BT 2))
and (17a,b)
b = 1+p+p? p
L= et

32 P27 T3S,y

At the limit (17b), p, is no longer positive, but it may be verified that even for this load
the inequality (16b) still assures m, < 1 everywhere. It is evident for the first load point
(17a) that positive work is done. For the second point (17b), substitution of p, and p, and
w from (14) into (6) gives d = w,. Thus, d is positive for positive w, and, therefore, the
collapse load curve (15) is exact between the limits (17a, b).

Atthelimit point (17a)for which p; = 0, the state of stress for the entireregion0 < r < p
corresponds to the one point B of the yield condition, Fig. 3(a) and Fig. 2. The deflection
solution for this region is, therefore, not unique, because all strain vectors q of a 90°-fan
are permitted ; i.e., any deflection with positive x, and k, is allowed. This lack of uniqueness
at p;, = Ois indicated by the dashed lines in Fig. 3(a).

Collapse Mode I1. For this solution the stress trajectory lies partly on side AB and partly
on side BC of the yield limit as shown in Fig. 3(b). The deformation state consists of a
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(d) Mode I¥
Fi1G. 3. Stress trajectories and incipient deflections for the collapse modes.

rigid-body translation in the central region. The results are:

m, =1, My
my = —6pr

m, =1, My =
my = 6p,r

my = 1,

mr

(e) Mode X and ¥T

= 1_3p1r27

= 143p,r? —3(p; +p,)p%

= [3(p1+p)p* + 1](1 = 1/r) = po(r? = 1/r),

FJ

(f) Mode ¥II

(18a—)
0r<yp
- (19a—)
psr=
r<rsi (20a, b)

These moment-equations include the conditions m(0) = mg(0), m,(1) = 0, and the condi-
tion of continuity of m, at r = p. The conditions my(&) = 1 and m(£) = 1 substituted into
equations (19b) and (20b) give, respectively :

(E2=pAp,—p°p1 =0
[(1—£%)=3p*(1=&)]p,—3p(1—&)p, = 1.

(21a,b)

Equations (21a, b) constitute a nonlinear relation between p, and p, in terms of the radius

parameter &.
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For 0 £ r £ p, the restrictions my(p) = 0 and my < 0, imposed on solutions (18b, ¢),
imply two inequalities for p, :

1
P = 55, p, 20. (22a,b)

The restriction my = 0 in solution (19c¢) gives:
p220. (22c)

Equality in either (22a) or (22b) gives the following limits for Mode II from equations
(21a,b):
1 1

= = h > p, 23a
PL=33  P2Tymop where £, > p (23a)

1

S-priezy P 2

p1 =0, P2

and where

263 —-683+3p7+1 = 0.

It can be shown that positive work is done for Mode IL
Collapse Mode 111. Examination of Mode I1in Fig. 3(b) suggests that the rigid body transla-
tion in the central region and the condition (10) can also be satisfied by another Mode 111
shown in Fig. 3(c). At a point # on side AB, the stress trajectory for r < 5 is permitted to
lie in the rigid domain bounded by the yield surface ([7], pp. 27-28). For 0 £ r £ 5 the
stress distribution is not unique. Any arbitrary solution to the equilibrium equations (4)
and (5) which also satisfies inequalities (7a—f) and equation (10) is acceptable. The arbitrari-
ness is due to the lack of a constitutive law in the rigid region 0 < r < #. This shows the
difference between a rigid-plastic material and an elastic-plastic material.

For this rigid-plastic solution the plastic part yet determines a collapse-load curve. For
n S r £ ¢, equations (19a—) and inequality (22c) for side AB are valid. The conditions
my(§) = 1 and my(n) = m, give

(&*=p*p,—p*py =0

(24a, b)
143p,(n* —p?)—3p1p? = my,

where 0 < my £ 1.For £ £ r £ 1, equations (20a, b) and (21b) hold for side BC. Equations
(24a) and (21b) enable a collapse-load curve to be plotted for Mode I1I for various values
of the radius £. Since equation (24a) is identical to (21a), the collapse-load curve for Mode 111
is found to be a smooth continuation of the curve for Mode I1.

It is easily shown that positive work is done for the p, and p, values for Mode I11, and
for kinematically admissible deflection values satisfying the solution equations (8a, b, g)
and (11). In order to prove that equations (24a) and (21b) constitute an exact solution for
pi and p,, there yet remains to show that a statically admissible stress state exists for the
rigid region 0 < r < 5. As an example, the stress trajectory in Fig. 3(c) is a statically
admissible solution. For this trajectory the moment solution is

my = —m,, m, = —m,+p,r? for 0r<yp (25a,b)
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and
3
me—my=my, m, =[—m3+3(p,+p,)p*]log r/n—ipz(rz—n2)+ I, for p=sr<y,
(25¢, d)

where 0 < m, < 1and 0 < m; < 1. This solution has m, > 0, m,(0) = my(0), and m,(n) = 1,
as required. Continuity of m, at r = p gives one equation between the parameters m, and
m,. Thus, arbitrariness exists in the solution as indicated earlier.

Equation (24b) is one equation between m, and n which for 0 < m; < 1 and p, > 0

implies p = n < {. The non-uniqueness in »n means that the width of the plastic zone
n < r £ £ is not unique. Thus, in Mode I non-uniqueness is exhibited in two ways: the
stresses in the rigid region 0 £ r < 7 are not unique, and the width of the plastic region
n £ r < & is not unique.
Collapse Mode IV. The stress trajectory of Collapse Mode III for 0 < r < # in Fig. 3(c),
suggests that the stress trajectory of a new mode, IV, may lie on sides EF and FA for
0 < r < n. This is the case as shown in Fig. 3(d). However, when this analysis is carried out
it is found that this collapse mode is valid at only one point in the p,, p, plane. This point
is also a point for Mode III for which m; = 0 in equation (24b).

The detailed solution for Mode IV is not presented, since it exists for only one point
and because the point (p,, p,) can also be found from solutions for Mode III and another
Mode VII which is considered later.

For the deflection shown in Fig. 3(d), open circles indicate strong discontinuities,

“yield hinges” (discontinuity in w'), and solid circles indicate weak discontinuities (con-
tinuity in w').
Collapse Mode V. In the analysis conducted so far, adjoining collapse modes have been
found by first finding a side or sides of the Tresca hexagon common to both modes. How-
ever, this method becomes increasingly difficult to employ as the collapse modes have
become more complex. Instead of seeking another mode adjoining the complex mode IV,
it is more efficient to seek a connection to the simple mode, I. Mode 1, Fig. 3(a) was originally
found for p, < 0. Mode I, reflected about the origin is also valid for p, = 0 and has then
side EF of the yield surface (Fig. 2) valid throughout the plate. Collapse Mode V is now
considered for which yielding is defined partly by side FA in addition to side EF as shown
in Fig. 3(e). The solution is as follows:

my = —1, m, = —1+p,;r? m, = 2p,r, 0r=yp (26a—)
my=—1,  m, =[3ps+p)p’ = 1(1={/r)—pyr* = */r),
(27a—)
m, = [3(P1+P2)P2_l]C/rz_P2(2r+C3/"2), p=r=s¢{
3
mg=m—1,  m, =[3(p+p)p*—1]logr—2p,(r*~1),
(28a—)

m, = [3(P1+P2)P2—1J1/r_3l72r5 {sr=1.

This solution satisfies the conditions m(0) = mg(0), m({) = 0, and m,(1) = 0. On side EF,
the conditions m,(p) < 0 and m;(p) = O require from equations (26a, c), that

1
l? and P, =0. (29a.b)

lIA

P1
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The conditions m;({) = 0, m(n) = 0, m(1) < 0, m({) = 0, and m,(n) < 1, substituted into
equations (27¢), (28¢), (28c), (28b), and (28b), respectively, give :

3(p4 +P2)P2 -1 _3P2C2 2 0,
3(py +P2)P2 -1- 31’2’12 =0,
3(p1+p)p*—1-3p, 0, (30a—¢)

3
[3(py+po)p*—1] logC—Epz(Cz—l) =0,

3
[3(p; +Ppy)p*—1]logn —Epz(nz -1

Also, continuity of m, at r = p requires that equations (26b) and (27b) are equal:

—1+4p,p? = [3(p, +p)p* — 11[1-/p]— palp* — /p). (30f)

The three equations (30b, d, f) in four unknowns p,, p,, {, and 5 define a collapse-load curve.
The solution is exact if it can be shown that it is kinematically admissible and dissipates
positive energy. The deflection solutions (8¢) and (8f) which satisfy the conditions w(1) = 0,
w(0) = —wg, and w(¢) and w'(£) continuous, are

_r—{+{log))

= o Wo, 0=r={
1-1lo
lC( g0) (31a, b)
_ logr <,r<1
1_logcw() il C=r= .

[Continuity of w'({) is required because a strong discontinuity in the strain-rate vector q
cannot be permitted at Point F ([1], p. 12).]

Forn = { = 1, equation (30b) implies equality in (30a) and (30c) and Mode V intersects
Mode 1. For { = p, equation (30f) requires p, = 1/p?, and (29a) becomes an equality.
Equation (30d) then determines p,. Thus, at the other limit point to Mode V, p, and p, are

p—l _ —2logp
LS P T T o 21— 07

It can be verified that positive energy is dissipated by substitution of (32a, b) and (31a, b)
into (6).

Collapse Mode VI. A new collapse mode, VI, intersecting V at the point (32a, b) is easily
found, which is based on the same sides of the yield condition. The difference is that r = p
now falls on side FA rather than on EF as indicated in Fig. 3(e). It follows, therefore, that
the deflection solution (31a, b) is again valid, and that the stress solution is:

(32a,b)

me=—1,  m=—1+pr’, m=2ppr, 0<r=<{ (33av)

3
my = m,— 1’ m, = Epl(rz_cz)_IOg(r/O,

3
I
I

)

~
|

[
A

~

A

©
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3
My =m,— 15 m, = [3(P1+P2)p2—1] logr_EPZ(rz_ 1)’

i (35a—<)
m, = [3(py+p2)p’ = LI =3par, p<r<i
This solution satisfies the conditions m,(0) = my(0), m({) = 0, and m,(1) = 0 if
1
p= & (36)

Forp < r £ 1,theconditionsm,(y) < 1and m;() = 0, substituted into (35b, ¢), respectively,
give

3
[3(p, +p2)p*—1] 10gn—5p2(n2— nH<i,

(37a,b)
3(py+po)p* —1-3pn* = 0.
Continuity of m, at r = p in equations (34b) and (35b) requires:
3 2 2 2 3 2
5P1lp? =)= log(p/0) = [3(py +po)p* — 1] log p =35 p(p* —~ 1), (38)

Equations (36), (37b), and (38) in the four unknowns, p,, p,, {, and n determine a collapse-
1
load curve. As already indicated, { = p,p, = [7 is the point of intersection with Mode V

[p, given by (32b)]. The other limit point to Mode VI occurs when (37a) becomes an
equality. It can be found that positive energy is dissipated by substitution of p, and p,
values and the deflection solutions (31a, b) into equation (6).

Collapse Mode VII. At the limit point r = 5 of Mode VI corresponding to the vertex A,
the stress trajectory can also enter within the yield surface ([ 7], pp. 27-28). Thus, the stress
trajectory shown in Fig. 3(f) is considered for Mode VII. A rigid-body deflection, w = 0,
is the solution forny < r £ 1.

For 0 < r < g, the yield conditions for sides EF and FA define yielding as before in
Mode VI. For n £ r £ 1 the plate is rigid and Q traces a trajectory inside FA. As in Mode
II1, that part of the stress-trajectory within the yield surface is not unique.

Because of the similarity with Mode VI, equations (33a—c), (34a—c), (36), and (37b) also
hold for this mode, VII. Equations (35a, ¢) also hold, but for p < r < 5. Equation (35b)
must be replaced by

3
m, = [3(p; +py)p*—1] log ("/'1)"51’2("2—'72)'*‘1 (39)
in order to satisfy the condition m,(s) = 1. Continuity of m,at r = p now gives:

3 3
5p1(p2 —{%)—log (p/0) = [3(p, +p)p*—1]log (p/n)—ipz(p2 —n?)+1. (40)

For n <r <1, any statically admissible stress solution may be permitted which
satisfies the continuity conditions and boundary conditions. The trajectory shown in
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Fig. 3(f) is an example. It corresponds to the following moment solution:

my = Oa
3
m, = 3(p; +p,)p* (1—2‘)*‘1’2(’2—,17)*'2, for n<r=<é,

and

my = m,—m,
3
m, = [-m+3(p1+pz)p2]logr~§pz(r2~1), for ¢srs,

where 0 < m < 1. This solution satisfies the continuity condition at » = 5 and the boundary
condition m, = 0 atr = 1. Also m, < O for # < r £ £ as can be verified with use of equa-
tion (37b). Continuity of m, at r = ¢ gives one equation between the unknowns m and £,
Thus the solution is arbitrary to this degree. It is found that m or & can be chosen to provide
m <0for{<r=s1.

Although there remains some arbitrariness in the stress solution for n < r <1, a
collapse-load curve for Mode VII can be plotted using only equations (36), (37b), and (40).
This is an exact collapse-load curve since it is also kinematically admissible ; d > 0 as can
be checked. The complete collapse-load diagram shown in Fig. 4 is now finished.

iy

P

F1G. 4. Collapse-load diagram for a circular plate, p = 0-4.
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The point of intersection of Modes VII and III, where also Mode IV is valid, is an
interesting point. At this point the deflection solution is not unique. There is a changeover
from positive deflection to negative deflection and a transition in appearance of the
deflected shape. The deflection profiles for these three modes are shown together in Fig. 5.

‘ rigid plastic

-

Mode I ‘\
A\gmq
|

plastic

S

rigld
FIG. 5. Point of transition from Mode III to Mode IV to Mode VII, p, = 798, p, = 420, p = 0-4.

Mode T

Mode ¥TI

The radii, r = 0:68 and r = 0-62 to the yield-hinge circles (strong discontinuities) are the
same for Modes Il and IV, and for Modes IV and VII, respectively.

CONCLUSIONS

A plate or shell of rigid-perfectly plastic material usually collapses at a definite load
and in a specific shape for a loading defined by a single parameter. Under multiple load-
ing, however, there is an interplay of load parameters which characterizes several different
collapse mechanisms. A simply supported circular plate loaded by two uniform pressures,
a two-load parameter problem, is an example. In this case, seven independent collapse
modes are possible each for a different range of the load parameters. In five of the modes,
the whole plate yields according to one or more sides of the Tresca yield condition. In the
other two modes, only part of the plate is wholly plastic, and other parts are rigid with stress
trajectories within the yield surface. The partially rigid, partially plastic collapse occurs
for opposing loads. Also, when the loads oppose one another, the deflection solution may
not be unique, but yet has to be a linear combination of a finite number of possibilities.
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Résumé—La flexion d’une plaque circulaire, simplement supportée sous deux charges normales uniformes de
magnitudes différentes dans la région centrale et la couronne circulaire extérieure est considérée. Un matériel de
plastique parfaitement rigide est assumé qui obéit a la condition de rendement de Tresca. Les solutions exactes
sont déterminées en termes des moments, de flexion radiaux et circonférentiels. Un diagramme complet de charge
de rupture a deux paramétres est construit, qui est régulier du c6té de la piece.

Une variété de mécanismes de rupture est exposée pour différents degrés de chargement. Particuliérement un
mode de déflection a “deux fagons’ est découvert, la plaque peut dévier soit “‘en haut” soit “‘en bas™ 4 certains
degrés de charges opposantes. Un nouveau résultat de portée spéciale est démontré—des portions de quelques
trajectoires de contrainte se trouvent dans le domaine rigide limité par la surface de rendement.

Zusammenfassung—Die Biegung einer einfach gestiitzten runden Platte unter zwei gleichf6rmigen Normallasten
verschiedener Grésse, im Mittelbereich sowie im #usseren Ring, wird behandelt. Ein starres, vollkommen plastis-
ches Material wird vorausgesetzt, das die Tresca’sche Fliessbedinung befolgt. Genaue Losungen werden bestimmt
und als Radial- und Ringbiegemomente ausgedriickt. Ein vollstindiges Schaubild wird aufgebaut fiir die zwei-
parameter Zusammenbruchsbelastung, das Schaubild ist stiickweise regelmissig. Verschiedene Zusammen-
bruchsmechanismen werden fiir die verschiedenen Belastungsverhiltnisse gezeigt. Insbesondere wird eine
“zweiweg” Durchbiegung gezeigt, wobei die Platten bei bestimmten Verhiltnissen der gegenwirkenden Belas-
tungen “auf”’ oder “ab” ausweichen kénnen. Ein neues Resultat wird gezeigt, das von besonderer Wichtigkeit
ist—Teile mancher Spannungstrajektorien liegen innerhalb der starren Domiine die von der Fliess-Oberfliche
umgeben sind.

AbcrpakT—PaccmatpuBaercs crubanue cBoGOAHO ONEPTOR KPYrOBO# MNACTHHEI O ABYMS OJHOPOIHBIME
HOpMallbHbIMHM HArPy3KaMH pa3IMYHbIX Pa3MEPOB B LIEHTPAJIBHOM YaCTH M BO BHEILHEM KPYTOBOM KOJIBLE.
IMpeanonaraercs COBEPLUIEHHO TBEPHBIM IUIACTHYECKHIT MaTepuas, KOTODPBIA YIOBJIETBODPAET YCIOBHIO
TekyuecTd Tpecka (Tresca yield). OnpeneneHsl TOUHBIE PELIEHHA C TOYKH 3PEHMA PaaHabHBIX H3rHGAOLIMX
MOMEHTOB OKPYXHOCTH Kpyra. CocraBsieHa IOJIHAs IHarpamMma [BY-NapaMeTPHYECKON KPHUTHYECKOH
Harpysku, Koropas KyCOYHO TpaBMIbHa. [lpeacraBneHo MHoOroo6pasue pa3pyuiaronX (KPUTHYECKHX)
MEXaHM3MOB [JIA Pa3NM4HbIX COOTHOIUEHWH Harpy3ok. B ocobGeHHocTH HaiimeH ‘‘aBycropoHHuit”’ oGpa3s
HEHCTBHA OTKIJIOHEHHA; TUIACTHHA MOXET OTKJIOHATBCA ‘‘BBEPX’’ MM ‘‘BHH3’’ NPH ONPEAESIEHHBIX COOTHO-
LIEHHAX MPOTUBOINIOCTABICHHBIX HATPY30K.

IMoka3aH HOBBEIH pPE3yNbTAT CHEUMAJILHOTO 3HAYEHMs. YacTu HEKOTODBIX TPAIKTOPHHK HANPSIKEHHA
JeXaT B Impeaesax TBEPoi obnacTu, orpaHM4eHHON MOAAAIOLUEHCS NTOBEPXHOCTIO.



